logo search
ответы часть2

50. Что такое голография? история и физические процессы, заложенные в основу метода голографии?

Трехмерное изображение получается из-за того, что световые волны отражаются от всех его сторон, перемешиваясь и накладываясь друг на друга. Взаимодействие этой комбинации волн придает изображению светотень и глубину. Фотокамера не способна получить всю информацию об этих волнах, поэтому она дает двухмерное изображение. Голография получает глубину изображения за счет регистрации расстояния, которое проходят эти волны от объекта.

Обычная голограмма получается при разделении лазерного луча на два с помощью посеребренного зеркала. Один из них, называющийся объектным лучом, освещает объект голограммы, и отраженные световые лучи попадают на фотографическую пластину. Второй луч — он называется опорным — направляется непосредственно на пластину. Оба луча складываются и образуют на пластине так называемую «интерферограмму». После проявления фотопластины лазерный луч направляется через проявленное голографической изображение под тем же углом, что и опорный луч, но с противоположной стороны. Интерферограмма так рассеивает свет, что в пространстве образуется трехмерное «призрачное» изображение объекта.

Голография основывается на двух физических явлениях - дифракции и интереференции световых волн.

Физическая идея состоит в том, что при наложении двух световых пучков, при определенных условиях возникает интерференционная картина, Интерференционная картинато есть, в пространстве возникают максимумы и минимумы интенсивности света (это подобно тому, как две системы волн на воде при пересечении образуют чередующиеся максимумы и минимумы амплитуды волн). Для того, чтобы эта интерференционная картина была устойчивой в течение времени, необходимого для наблюдения, и ее можно было записать, эти две световых волны должны быть согласованы в пространстве и во времени. Такие согласованные волны называются когерентными.

Если волны встречаются в фазе, то они складываются друг с другом и дают результирующую волну с амплитудой, равной сумме их амплитуд. Если же они встречаются в противофазе, то будут гасить одна другую. Между двумя этими крайними положениями наблюдаются различные ситуации сложения волн.Лазерная установка Результирующая сложения двух когерентных волн будет всегда стоячей волной. То есть интерференционная картина будет устойчива во времени. Это явление лежит в основе получения и восстановления голограмм.

Первая голограмма была получена в 1947 году Деннисом Габором в ходе экспериментов по повышению разрешающей способности электронного микроскопа. Он же придумал само слово «голография», которым он подчеркнул полную запись оптических свойств объекта. К сожалению, его голограммы отличались низким качеством. Получить качественную голограмму без когерентного источника света невозможно.

После создания в 1960 году красных рубинового (длина волны 694 нм, работает в импульсном режиме) и гелий-неонового (длина волны 633 нм, работает непрерывно) лазеров, голография начала интенсивно развиваться.

В 1962 году была создана классическая схема записи голограмм Эмметта Лейта и Юриса Упатниекса (голограммы Лейта-Упатниекса), в которой записываются пропускающие голограммы (при восстановлении голограммы свет пропускают через фотопластинку, хотя на практике некоторая часть света от неё отражается и также создаёт изображение, видимое с противоположной стороны).

В 1967 году рубиновым лазером был записан первый голографический портрет.

В 1968 году Юрий Николаевич Денисюк получил высококачественные (до этого времени отсутствие необходимых фотоматериалов мешало получению высокого качества) голограммы, которые восстанавливали изображение, отражая белый свет. Для этого им была разработана своя собственная схема записи голограмм. Эта схема называется схемой Денисюка, а полученные с её помощью голограммы называются голограммами Денисюка.

В 1977 году Ллойд Кросс создал так называемую мультиплексную голограмму. Она принципиально отличается от всех остальных голограмм тем, что состоит из множества (от десятков до сотен) отдельных плоских ракурсов, видимых под разными углами. Такая голограмма, естественно, не содержит полную информацию об объекте, кроме того, она, как правило, не имеет вертикального параллакса (то есть нельзя посмотреть на объект сверху и снизу), но зато размеры записываемого объекта не ограничены длиной когерентности лазера (которая редко превышает несколько метров, а чаще всего составляет всего несколько десятков сантиметров) и размерами фотопластинки. Мало того, можно создать мультиплексную голограмму объекта, которого вовсе не существует! Например, нарисовав выдуманный объект с множества различных ракурсов. Мультиплексная голография превосходит по качеству все остальные способы создания объёмных изображений на основе отдельных ракурсов (например, линзовые растры), однако она всё равно далека от традиционных методов голографии по реалистичности.

В 1986 году Абрахам Секе выдвинув идею создания источника когерентного излучения в приповерхностной области материала путем облучения его рентгеновским излучением. Поскольку пространственное разрешение в голографии зависит от размеров источника когерентного излучения и его удаленности от объекта, то оказалось возможным восстановить окружающие эмиттер атомы в реальном пространстве. В отличие от оптической голографии, во всех предложенных на сегодняшний день схемах электронной голографии восстановление изображения объекта осуществляется с помощью численных методов на компьютере. В 1988 году Бартон предложил такой метод для восстановления трехмерного изображения, основанный на использовании фурье-подобных интегралов, и продемонстрировал его эффективность на примере теоретически рассчитанной голограммы для кластера известной структуры. Первое восстановление трехмерного изображения атомов в реальном пространстве по экспериментальным данным проведено для поверхности Cu(001) Харпом в 1990 году.