Алгоритм Расчет критерия φ*
1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого "есть эффект" и тех, у кого "нет эффекта". Если признак измерен количественно, использовать критерий λ для поиска оптимальной точки разделения.
2. Начертить четырехклеточную таблицу из двух столбцов и двух строк. Первый столбец - "есть эффект"; второй столбец - "нет эффекта"; первая строка сверху - 1 группа (выборка); вторая строка - 2 группа (выборка).
3. Подсчитать количество испытуемых в первой группе, у которых "есть эффект", и занести это число в левую верхнюю ячейку таблицы.
4. Подсчитать количество испытуемых в первой выборке, у которых "нет эффекта", и занести это число в правую верхнюю ячейку таблицы. Подсчитать сумму по двум верхним ячейкам. Она должна совпадать с количеством испытуемых в первой группе.
5. Подсчитать количество испытуемых во второй группе, у которых "есть эффект", и занести это число в левую нижнюю ячейку таблицы.
6. Подсчитать количество испытуемых во второй выборке, у которых "нет эффекта", и занести это число в правую нижнюю ячейку таблицы. Подсчитать сумму по двум нижним ячейкам. Она должна совпадать с количеством испытуемых во второй группе (выборке).
7. Определить процентные доли испытуемых, у которых "есть эффект", путем отнесения их количества к общему количеству испытуемых в данной группе (выборке). Записать полученные процентные доли соответственно в левой верхней и левой нижней ячейках таблицы в скобках, чтобы не перепутать их с абсолютными значениями.
8. Проверить, не равняется ли одна из сопоставляемых процентных долей нулю. Если это так, попробовать изменить это, сдвинув точку разделения групп в ту или иную сторону. Если это невозможно или нежелательно, отказаться от критерия φ* и использовать критерий χ2.
9. Определить по Табл. величины углов φ для каждой из сопоставляемых процентных долей.
10. Подсчитать эмпирическое значение φ* по формуле:
где: φ1 - угол, соответствующий большей процентной доле;
φ2 - угол, соответствующий меньшей процентной доле;
n1 - количество наблюдений в выборке 1;
n2 - количество наблюдений в выборке 2.
11. Сопоставить полученное значение φ* с критическими значениями: φ* ≤1,64 (р<0,05) и φ* ≤2,31 (р<0,01).
Если φ*эмп ≤φ*кр. H0 отвергается.
При необходимости определить точный уровень значимости полученного φ*эмп по Табл.
Критерий предназначен для оценки различий одновременно между тремя, четырьмя и т.д. выборками по уровню какого-либо признака.
Он позволяет установить, что уровень признака изменяется при переходе от группы к группе, но не указывает на направление этих изменений.
Критерий Н иногда рассматривается как непараметрический аналог метода дисперсионного однофакторного анализа для несвязных выборок (Тюрин Ю. Н.). Иногда его называют критерием "суммы рангов" (Носенко И.А.).
Данный критерий является продолжением критерия U на большее, чем 2, количество сопоставляемых выборок. Все индивидуальные значения ранжируются так, как если бы это была одна большая выборка. Затем все индивидуальные значения возвращаются в свои первоначальные выборки, и мы подсчитываем суммы полученных ими рангов отдельно по каждой выборке. Если различия между выборками случайны, суммы рангов не будут различаться сколько-нибудь существенно, так как высокие и низкие ранги равномерно распределятся между выборками. Но если в одной из выборок будут преобладать низкие значения рангов, в другой - высокие, а в третьей - средние, то критерий Н позволит установить эти различия.
Ограничения критерия Н
1. При сопоставлении 3-х выборок допускается, чтобы в одной из них п=3, а двух других n=2. Но при таких численных составах выборок мы сможем установить различия лишь на низшем уровне значимости (р≤0,05).
Для того, чтобы оказалось возможным диагностировать различия на более высоком уровнем значимости (р≤0,01), необходимо, чтобы в каждой выборке было не менее 3 наблюдений, или чтобы по крайней мере в одной из них было 4 наблюдения, а в двух других - по 2; при этом неважно, в какой именно выборке сколько испытуемых, а важно соотношение 4:2:2.
2. Критические значения критерия Н и соответствующие им уровни значимости.
При большем количестве выборок и испытуемых в каждой выборке необходимо пользоваться Таблицей критических значений критерия χ2, поскольку критерий Крускала-Уоллиса асимптотически приближается к распределению χ2 (Носенко И.А.; J. Greene, M. D'Olivera).
Количество степеней свободы при этом определяется по формуле: V=c-1 где с - количество сопоставляемых выборок.
3. При множественном сопоставлении выборок достоверные различия между какой-либо конкретной парой (или парами) их могут оказаться стертыми. Это ограничение можно преодолеть, если провести все возможные попарные сопоставления, число которых будет равняться ½·[c·(c-1)]* таких попарных сопоставлений используется, естественно, критерий для двух выборок, например U или φ*.
- Тема 1. Лекция
- Тема 2. Лекция
- Тема 3. Лекция
- Тема 4. Лекция
- Тема 5. Лекция
- Тема 6. Лекция
- Непараметрический критерий q Розенбаума
- Алгоритм Подсчет критерия q Розенбаума
- Алгоритм Подсчет критерия u Манна-Уитни.
- Критерий Стьюдента
- Алгоритм Расчет критерия φ*
- Алгоритм Подсчет критерия н Крускала-Уоллиса
- Алгоритм Подсчет критерия s Джонкира
- Тема 7. Лекция
- Алгоритм Расчет критерия знаков g
- Алгоритм Подсчет критерия т Вилкоксона
- Критерий χ2r Фридмана
- Алгоритм Подсчет критерия χ2r Фридмана
- Алгоритм Подсчет критерия тенденций l Пейджа
- Тема 8. Лекция
- Тема 9. Лекция