logo
матем статистика

Тема 5. Лекция

Нормальное распределение

Нормальное распределение (распределение Гаусса, распределение Муавра – Лапласа) – это распределение значений переменной величины в тех случаях, когда она варьирует случайным образом и не подвержена влиянию какого-либо систематического фактора.

Формула нормального распределения:

При больших выборках (n > 50) можно использовать упрощенную формулу:

(6.3)

Соответствие эмпирического распределения нормальному находится по соответствующим таблицам. При этом эмпирическое распределение считается соответствующим теоретическому (нормальному), если асимметрия при данной выборке не превышает граничного значения.

Пример

Распределение значений исследуемого признака для выборки в 100 человек обнаружило коэффициент асимметрии As = 0,55.

Вопрос: соответствует ли данное распределение нормальному?

Решение: в статистической таблице находим, что для n = 100 Asкр. = 0,39 (для b1 = 0,95) и Asкр. = 0,57 (для b1 = 0,95).

Ответ: распределение статистически достоверно отличается от нормального с вероятностью 0,95, поскольку Asэксп. > Asкр. С вероятностью же 0,99 аналогичного вывода мы сделать не можем (Asэксп. < Asкр.).

Причины асимметрии могут быть различными. Во-первых, это возможное действие побочных однонаправленных факторов. Так, например, в тестах на измерение интеллекта могут преобладать сложные задания, с которыми большинство испытуемых не справляется. Это может явиться причиной положительной асимметрии (центральная тенденция лежит слева от среднего значения). Во-вторых, это ограничение (сверху или снизу) размаха вариаций. Например, при измерении времени сенсомоторной реакции нижний предел реагирования лимитирован физиологическими возможностями субъекта, в то время как верхний жестко не ограничен. Наконец, третьей причиной асимметрии может быть неоднородность выборки (например, если исследование проводится в смешанной группе разного возраста). При этом имеет место наложение друг на друга двух или нескольких разных по численности и сдвинутых относительно друг друга по моде распределений.

Коэффициент эксцесса

В отличие от коэффициента асимметрии, коэффициент (показатель) эксцесса характеризует компактность или «размытость» распределения, его островершинность или плосковершинность, что связано с разным характером группирования значений переменной вокруг среднего (рис. 6.4).

Причинами эксцесса могут быть большая или меньшая степень тяготения переменных к центральной тенденции, неоднородность выборки, наложение друг на друга нескольких распределений с одинаковой модой и разной дисперсией и т. д.

Вычисление показателя эксцесса

(6.4)

Теоретически величина эксцесса может варьировать от – 3 до + ¥. Критерий согласия с нормальным распределением аналогично коэффициенту асимметрии определяется по таблицам граничных значений. Например, для n = 100 и b1 = 0,95 Exкр = 0,83 (см. статистические таблицы).

Аналогично определению асимметрии распределение соответствует нормальному (согласуется с нормальным), если Ex < Exкр. При обратном соотношении принято говорить, что по показателю эксцесса эмпирическое распределение статистически достоверно отличается от нормального.

При анализе эмпирического распределения может возникнуть такая ситуация, когда по одному из показателей (асимметрии или эксцессу) распределение соответствует нормальному, по другому же – отличается от него. В этом случае следует использовать следующее правило: если хотя бы по одному из вышеуказанных показателей распределение достоверно отличается от нормального, то следует делать вывод о том, что экспериментальное распределение отличается от теоретического (нормального).

 

Кроме коэффициента асимметрии и показателя эксцесса, для сравнения экспериментального распределения с теоретическим используют и другие критерии, в частности критерий хи-квадрат и критерий l Колмогорова - Смирнова.

Критерий хи-квадрат (c2)

Критерий хи-квадрат основан на сравнении между собой эмпирических (экспериментальных) частот исследуемого признака и теоретических частот нормального распределения. Для сравнения частот можно пользоваться как 8-классовым, так и 16-классовым распределениями, теоретические частоты которых в интервале от – 4 до + 4 стандартных отклонений даны в статистических таблицах. В случае необходимости можно вычислять хи-квадрат и по большему числу классов – для этого используют специальные таблицы нормального распределения.

Критерий c2 рассчитывают по следующей формуле:

, (6.5)

Где fэ и fт – соответственно, экспериментальные и теоретические частоты в каждом отдельном классе разбиения. Полученное значение сравнивается со стандартным (табличным). Решение о соответствии экспериментального распределения теоретическому принимается, если c2 < χ2кр. при соответствующем числе степеней свободы и заданном уровне значимости. При этом необходимо иметь в виду, что в случае нормального распределения число степеней свободы (n) принимается равным N – 3, где N – число классов (групп разбиения).

Рассмотрим алгоритм вычислений критерия c2 на следующем примере.

Условие задачи

У 100 испытуемых определялся уровень нейротизма по тесту Айзенка. Получены следующие результаты (табл. 6.1):

Таблица 6.1

Нейро-тизм

Число испытуе-мых

Нейро-тизм

Число испытуе-мых

Нейро-тизм

Число испытуе-мых

Нейро-тизм

Число испытуе-мых

xi

fэ

xi

fэ

xi

fэ

xi

fэ

1

2

3

4

5

6

0

0

0

0

2

3

7

8

9

10

11

12

3

4

6

8

9

7

13

14

15

16

17

18

10

8

9

9

8

6

19

20

21

22

23

24

4

3

1

0

0

0

Задание

Определить соответствие экспериментального распределения теоретическому (нормальному) распределению с помощью критерия χ2 Пирсона.

Решение

Задача решается в три этапа:

1.     Определяем среднее значение переменной и ее стандартное отклонение. Поскольку в данном случае мы имеем дело со сгруппированными частотами, то для вычисления среднего арифметического следует использовать следующую формулу (см. раздел 4):

Подставляем в формулу значения нейротизма и соответствующие ему частоты из условия задачи:

 

 

Стандартное отклонение следует определять по следующей формуле:

(см. раздел 5)

В нашем случае:

2. Нормируем полученные результаты в единицах стандартного отклонения с «шагом» в 1σ (8-классовое распределение). Для этого строим шкалу значений в единицах стандартного отклонения от –4 до + 4σ. Далее определяем границы каждого из 8 классов в абсолютных значениях исследуемого показателя (уровней нейротизма). Напомним, что точкой отсчета в данном случае является центральное значение (σх = 0), которому теоретически должны соответствовать основные меры центральной тенденции – мода, медиана и среднее арифметическое значение (см. подраздел 6.1.1). Обозначим среднюю точку значением 13,2 (среднее арифметическое). После этого определяем границы классов в абсолютных единицах (значениях нейротизма), последовательно вычитая из среднего (слева от нулевой точки) или добавляя к среднему (справа от нее) величину стандартного отклонения (σх = 3,8). Наконец, подсчитываем частоты (число испытуемых) в каждом из классов и разносим полученные значения по классам теоретического распределения. Для большей наглядности можно представить результаты в виде следующей схемы:

– 4 σ – 3 σ – 2 σ – σ 0 σ 2 σ 3 σ 4 σ

-2,0 1,8 5,6 9,4 13,2 17,0 20,8 24,6 28,4

3. Составляем таблицу для вычисления критерия χ2 Пирсона (см. табл. 6.2). В столбце 1 обозначаем классы распределения (в единицах стандартного отклонения, в столбце 2 – подсчитанные нами экспериментальные частоты в каждом классе, в столбце 3 – теоретические частоты в процентном соотношении (см. табл. III Приложения). Столбец 4 служит для попарного сопоставления экспериментальных и теоретических частот: для этого следует использовать формулу В соответствующих статистических таблицах находим стандартные (критические) значения χ2. Напомним, что для 8-классового распределения (N = 8) число степеней свободы ν = N – 3 = 5. При этом стандартные значения χ2ст. для двух уровней значимости составляют, соответственно, 11,070 (β1 = 0,95) и 15,086 (β2 = 0,99).

Вывод

Для двух стандартных уровней значимости χ2 < χ2ст., следовательно, по критерию χ2 Пирсона экспериментальное распределение статистически не отличается от теоретического (нормального) распределения или, другими словами, соответствует последнему. Данный вывод можно считать справедливым для уровня значимости 0,99.

Примечания

1. Если по каким-либо причинам результаты анализа не удовлетворяют исследователя (например, χ2 ≈ χ2ст.), можно воспользоваться таблицей 16-классового распределения (см. статистические таблицы). В данном случае диапазон вариаций также составляет –4 ÷ +4σ, но ширина каждого класса вдвое меньше (0,5 стандартного отклонения). Кроме того, следует учесть, что при сравнении экспериментального значения хи-квадрат с критическим число степеней свободы в данном случае составляет N – 3 = 13.

2. Необходимо помнить о том, что теоретические частоты в таблице рассчитаны в процентном соотношении. При решении задачи анализа распределения испытуемых по уровню нейротизма объем выборки составлял 100 человек, поэтому никаких дополнительных преобразований не требовалось. В том же случае, когда n ≠ 100, необходимо уравнять частоты. При этом необходимо соблюдать правило, согласно которому экспериментальные частоты должны быть приведены к теоретическим (но не наоборот). Например, если n = 200, то экспериментальную частоту в каждом классе следует разделить на 2, если n = 50, то умножить на 2, а если, предположим, n = 52, то необходимо каждую экспериментальную частоту умножить на пересчетный коэффициент (в данном случае k = 100:52 = 1,923).

АЛГОРИТМ

Расчет критерия χ2

Занести в таблицу наименования разрядов и соответствующие им эмпирические частоты (первый столбец).

Рядом с каждой эмпирической частотой записать теоретическую частоту (второй столбец).

Подсчитать разности между эмпирической и теоретической частотой по каждому разряду (строке) и записать их в третий столбец.

4. Определить число степеней свободы по формуле:

ν=κ-1

где κ - количество разрядов признака.

Если ν=1, внести поправку на "непрерывность".

5. Возвести в квадрат полученные разности и занести их в четвертый столбец.

6. Разделить полученные квадраты разностей на теоретическую частоту и записать результаты в пятый столбец.

7. Просуммировать значения пятого столбца. Полученную сумму обозначить как χ2ЭМП.

8. Определить по Табл. критические значения для данного числа степеней свободы V.

Если χ2эмп меньше критического значения, расхождения между распределениями статистически недостоверны.

Если χ2эмп равно критическому значению или превышает его, расхождения между распределениями статистически достоверны.

Критерий Колмогорова – Смирнова (l)

Критерий Колмогорова – Смирнова основан на том же принципе, что и критерий χ2 Пирсона, но предполагает сопоставление накопленных частот экспериментального и теоретического распределений.

Столбцы 1 и 2 аналогичны таковым в предыдущей таблице. Столбец 3 соответствует экспериментальным частотам, накопленным путем суммирования частот от 1-го до 8-го класса. Теоретические накопленные частоты взяты из статистических таблиц. Максимальная разность между экспериментальной и теоретической накопленными частотами (столбец 5) соответствует 2,13. Проводим соответствующие вычисления:

Для определения соответствия экспериментального распределения теоретическому по критерию Колмогорова можно воспользоваться следующим правилом. Если l < 0,52, делается вывод о соответствии распределений для уровня значимости 0,95. При l > 1,36 распределение достоверно отличается от нормального. При значениях же l от 0,52 до 1,36 (интервал неопределенности) можно определить вероятность соответствия экспериментального распределения теоретическому по статистическим таблицам.

Вывод

Полученное нами значение λ = 0,21 < 0,52, следовательно, по критерию Колмогорова экспериментальное распределение соответствует нормальному с вероятностью 0,95.

Для определения соответствия эмпирического распределения теоретическому (нормальному) распределению можно воспользоваться и другим способом, который зачастую дает более точные результаты, поскольку не ограничен числом классов. Этот способ будет нами рассмотрен на примере той же задачи. Порядок вычислений приводится в табл. 6.4.

1.     В столбце 1 таблицы фиксируем значения xi (уровень нейротизма).

2.     Переводим значения xi в меру z Пирсона по формуле:

3.     Ориентируясь на условие задачи, вносим экспериментальные частоты в столбец 3.

4.     По значениям столбца 3 вычисляем накопленные экспериментальные частоты и фиксируем их в столбце 4.

5.     По значениям z Пирсона определяем теоретические накопленные частоты, для чего используем статистические таблицам.

6.     Вычисляем критерий d, сравнивая между собой экспериментальные (столбец 4) и теоретические частоты по формуле: d = │Fэксп. – Fтеор.│.

7.     Вычисляем критерий λ Колмогорова по стандартной формуле.

Ответ

λ = 7,57:10 = 0,76 (столбец 6 таблицы), что соответствует интервалу неопределенности 0,52 ÷ 1,36.

С целью устранения случайных факторов используем процедуру интервальной нормализации (столбец 7) и повторно вычисляем критерий λ:

λ* = 4,64 : 10 = 0,46 (столбец 8 таблицы).

Общий ответ

 

Эмпирическое распределение соответствует теоретическому (нормальному) распределению.

Таблица 6.4

xi

Z

fэ

Fэ

Fт

d

Fэ*

d*

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

-3,2

-2,9

-2,7

-2,4

-2,2

-1,9

-1,6

-1,4

-1,1

-0,8

-0,6

-0,3

0

0,2

0,5

0,7

1,0

1,3

1,5

1,8

2,1

2,3

2,5

2,8

0

0

0

0

2

3

3

4

6

8

9

7

10

8

9

9

8

6

4

3

1

0

0

0

0

0

0

0

2

5

8

12

18

26

35

42

52

60

69

78

86

92

96

99

100

100

100

100

0,07

0,18

0,34

0,82

1,40

2,88

5,49

8,08

13,57

21,19

27,43

38,21

50,00

57,92

69,14

75,80

84,13

90,31

93,31

96,40

98,21

98,92

99,37

99,75

0,07

0,18

0,34

0,82

0,60

2,12

2,51

3,92

4,43

4,81

7,57

3,79

2,00

2,08

0,14

2,20

1,87

1,69

2,69

2,60

1,79

1,08

0,63

0,25

0

0

0

0

1

3,5

6,5

10

15

22

30,5

38,5

47

56

64,5

73,5

82

89

94

97,5

99,5

100

100

100

0,07

0,18

0,34

0,82

0,40

0,62

1,01

1,92

1,43

0,81

3,07

0,29

3,00

1,92

4,64

2,30

2,13

1,31

0,69

1,10

1,29

1,08

1,63

0,25

АЛГОРИТМ

Расчет абсолютной величины разности d между эмпирическим и равномерным распределениями

1. Занести в таблицу наименования разрядов и соответствующие им эмпирические частоты (первый столбец).

2. Подсчитать относительные эмпирические частоты (частости) для каждого разряда по формуле:

f*эмп=fэмп/n

где fэмп - эмпирическая частота по данному разряду;

п - общее количество наблюдений. Занести результаты во второй столбец.

3. Подсчитать накопленные эмпирические частости Σf*j по формуле:

где Σf*j=Σf*j-1+f*j - частость, накопленная на предыдущих разрядах; j - порядковый номер разряда; f*j- эмпирическая частость данного /-го разряда. Занести результаты в третий столбец таблицы.

4. Подсчитать накопленные теоретические частости для каждого раз­ ряда по формуле:

Σf*т j=Σf*Т j-1+f*т j где Σf*т j-1 - теоретическая частость, накопленная на предыдущих

разрядах;

j - порядковый номер разряда;

f*т j - теоретическая частость данного разряда. Занести результаты в третий столбец таблицы.

5. Вычислить разности между эмпирическими и теоретическими нако­ пленными частостями по каждому разряду (между значениями 3-го и 4-го столбцов).

6. Записать в пятый столбец абсолютные величины полученных раз­ ностей, без их знака. Обозначить их как d.

7. Определить по пятому столбцу наибольшую абсолютную величину разности - dmax.

8. По Табл. определить или рассчитать критические значения dmax для данного количества наблюдений n.

Если dmax равно критическому значению d или превышает его, различия между распределениями достоверны.

Равномерное распределение

В ряде случаев психологу приходится иметь дело с равномерным распределением, когда варьирующая величина (переменная) приблизительно с равной вероятностью принимает любое значение в определенном фиксированном диапазоне от xmin до xmax. Пример такого распределения приводится на рис. 6.5.

Рис. 6.5. Графическое выражение теоретического равномерного распределения (пояснения в тексте)

Примером равномерного распределения может служить распределение испытуемых по квантилям, поскольку в каждом интервале квантильной шкалы частоты встречаемости признака одинаковы.

Работа с равномерным распределением достаточно проста. Учитывая, что общая площадь распределения соответствует Р = 1, вероятность события в интересующем нас диапазоне x1 ¸ x2 равна отношению ширины этого диапазона (размаха вариаций) x2 - x1 к общему (xmax ¸ xmin). Для сравнения экспериментального распределения с теоретическим можно использовать критерий хи-квадрат, а при достаточном количестве эмпирических частот и критерий Колмогорова. Рассмотрим использование этих критериев на двух примерах.

Пример 1

Можно априорно предположить, что число людей, обладающих одним из четырех основных типов темперамента (холерики, сангвиники, флегматики и меланхолики) приблизительно одинаково. Для проверки этой гипотезы проведено тестирование по тесту-опроснику Айзенка 100 взрослых испытуемых. Тип темперамента определялся у них по соотношению показателей экстраверсии и нейротизма.

Было получено следующее распределение испытуемых по типам темперамента: холерики – 22 человека, сангвиники – 36, флегматики – 13 и меланхолики – 29 человек.

Задача состоит в том, чтобы либо принять, либо отвергнуть изначальную гипотезу (нуль-гипотезу) о равномерности распределения людей по типам темперамента.

Для решения задачи можно составить таблицу, аналогичную той, которая использовалась для оценки согласия эмпирического распределения с нормальным по критерию хи-квадрат (см. табл. 6.5).

Таблица 6.5

Тип темперамента

Частота

(fэксп - fтеор)2

fтеор

fэксп

fтеор

Холерики (экстраверты с высоким уровнем нейротизма)

Cангвиники (эмоционально стабильные экстраверты)

Флегматики (эмоционально стабильные интроверты)

Меланхолики (интроверты с высоким уровнем нейротизма)

22

36

13

29

25

25

25

25

0,36

4,84

5,76

0,64

В данном случае следует пояснить, что теоретические частоты рассчитываются, исходя из гипотезы о том, что распределение по типам темперамента является идеально равномерным.

Вычисление показателя c2 (сумма значений в последнем столбце таблицы) дает величину 11,6. При сравнении полученного значения со стандартным (см. статистические таблицы) следует иметь в виду, что для равномерного распределения число степеней свободы вычисляется как число групп (классов) разбиения минус единица: в нашем случае n = N – 1 = 3.

Полученное нами значение (c2 = 11,6) больше стандартных (критических) значений как для 1-го (c2ст = 7,815), так и для 2-го уровня значимости (c2ст = 11,345). Отсюда следует, что принять гипотезу о равномерности распределения людей по типам темперамента мы не можем. Другими словами, распределение статистически достоверно отличается от равномерного.

Примечания

1.     Критерий c2 дает надежные результаты на выборках более 30 человек. На малых выборках (n ≤ 30) критерий может «пробуксовывать» и данные могут быть подвергнуты сомнению.

2. Если число градаций признака равно двум, в формулу вычисления c2 необходимо вводить соответствующую поправку (так называемую поправку на непрерывность): (fэксп - fтеор – 0,5)2

fтеор

Пример 2

Условие задачи

В выборке здоровых лиц мужского пола, студентов технических вузов в возрасте от 19 до 22 лет проводился тест М. Люшера в 8-цветном варианте. Установлено, что желтый цвет предпочитается испытуемыми чаще, чем отвергается (см. табл. 6.6).

Таблица 6.6

Разряды

Позиции желтого цвета

Сумма

1

2

3

4

5

6

7

8

Эмпирические частоты

24

15

13

8

15

10

9

8

102

Вопрос

Можно ли утверждать, что распределение желтого цвета по восьми позициям у здоровых испытуемых отличается от равномерного распределения?

Решение

 

Для определения соответствия эмпирического распределения теоретическому (равномерному) можно использовать критерий Колмогорова. Для этого вносим экспериментальные данные в таблицу (табл. 6.7) и проводим стандартные вычисления.

Таблица 6.7

Позиции желтого цвета

Частоты

Накопленные частоты

d

fэксп

fтеор

Fэксп.

Fтеор.

1

2

3

4

5

6

7

8

24

15

13

8

15

10

9

8

12,75

12,75

12,75

12,75

12,75

12,75

12,75

12,75

24

39

52

60

75

85

94

102

12,75

25,50

38,25

51,00

63,75

76,50

89,25

102

11,25

13,50

13,75

9,00

11,25

8,50

4,75

0

Отсюда:

Вывод

Экспериментальное распределение не соответствует теоретическому (равномерному) распределению.

Биномиальное распределение

В отличие от нормального и равномерного распределений, описывающих поведение переменной в исследуемой выборке испытуемых, биномиальное распределение используется для иных целей. Оно служит для прогнозирования вероятности двух взаимоисключающих событий в некотором числе независимых друг от друга испытаний. Классический пример биномиального распределения – подбрасывание монеты, которая падает на твердую поверхность. Равновероятны два исхода (события): 1) монета падает «орлом» (вероятность равна р) или 2) монета падает «решкой» (вероятность равна q). Если третьего исхода не дано, то p = q = 0,5 и p + q = 1. Используя формулу биномиального распределения, можно определить, например, какова вероятность того, что в 50 испытаниях (число подбрасываний монеты) последняя выпадет «орлом», предположим, 25 раз.

Для дальнейших рассуждений введем общепринятые обозначения:

n – общее число наблюдений;

i – число интересующих нас событий (исходов);

n – i – число альтернативных событий;

p – эмпирически определенная (иногда – предполагаемая) вероятность интересующего нас события;

q – вероятность альтернативного события;

Pn(i) – прогнозируемая вероятность интересующего нас события i по определенному числу наблюдений n.

Формула биномиального распределения:

 

 

(6.7)

В случае равновероятного исхода событий (p = q) можно использовать упрощенную формулу:

(6.8)

 

Рассмотрим три примера, иллюстрирующие использование формул биномиального распределения в психологических исследованиях.

Пример 1

Предположим, что 3 студента решают задачу повышенной сложности. Для каждого из них равновероятны 2 исхода: (+) – решение и (-) – нерешение задачи. Всего возможно 8 разных исходов (2 3 = 8).

Вероятность того, что ни один студент не справится с задачей, равна 1/8 (вариант 8); 1 студент справится с задачей: P = 3/8 (варианты 4, 6, 7); 2 студента – P = 3/8 (варианты 2, 3, 5) и 3 студента – P =1/8 (вариант 1).

Студент

Варианты исходов

1

2

3

4

5

6

7

8

A

+

+

+

+

-

-

-

-

B

+

+

+

+

-

-

C

+

-

+

-

+

-

+

-

Пример 2

Предположим, 5 студентов выполняют интеллектуальный тест повышенной сложности. Правильное выполнение теста «+», неправильное «-». Каждый студент может иметь 2 возможных исхода (+ или -), причем вероятность каждого из этих исходов равна 0,5.

Студенты

1

2

3

4

5

Возможные

исходы

+

-

+

-

+

-

+

-

+

-

Необходимо определить вероятность того, что трое из 5 студентов успешно справятся с данной задачей.

Решение

Всего возможных исходов: 25 = 32.

Общее число вариантов 3(+) и 2(-) составляет

Следовательно, вероятность ожидаемого исхода равна 10/32 » 0,31.

Пример 3

Считается, что число экстравертов и интровертов в однородной группе испытуемых является приблизительно одинаковым.

Задание

 

Определить вероятность того, что в группе из 10 случайных испытуемых обнаружится 5 экстравертов.

Решение

1.     Вводим обозначения: p = q = 0,5; n = 10; i = 5; P10(5) = ?

2.     Используем упрощенную формулу (см. выше):

Вывод

Вероятность того, что среди 10 случайных испытуемых обнаружится 5 экстравертов, составляет 0,246.

Примечания

1. Вычисление по формуле при достаточно большом числе испытаний достаточно трудоемко, поэтому в этих случаях рекомендуется использовать таблицы биномиального распределения.

2. В некоторых случаях значения p и q можно задать изначально, но не всегда. Как правило, они вычисляются по результатам предварительных испытаний (пилотажных исследований).

3. В графическом изображении (в координатах Pn(i) = f (i)) биномиальное распределение может иметь различный вид: в случае p = q распределение симметрично и напоминает нормальное распределение Гаусса; асимметрия распределения тем больше, чем больше разница между вероятностями p и q.

Распределение Пуассона

Распределение Пуассона является частным случаем биномиального распределения, используемым при очень низкой вероятности интересующих нас событий. Другими словами, это распределение описывает вероятность редких событий. Формулой Пуассона можно пользоваться при p < 0,01 и q ≥ 0,99.

Уравнение Пуассона является приближенным и описывается следующей формулой:

 

где μ представляет собой произведение средней вероятности события и числа наблюдений.

В качестве примера рассмотрим алгоритм решения следующей задачи.

Условие задачи

За несколько лет в 21 крупной клинике России было проведено массовое обследование новорожденных на предмет заболевания младенцев болезнью Дауна (выборка в среднем составляла 1000 новорожденных в каждой клинике). Были получены следующие данные:

Число клиник

11

6

2

1

1

0

Число заболеваний

0

1

2

3

4

5

Задание

1.     Определить среднюю вероятность заболевания (в пересчете на число новорожденных).

2.     Определить, на какое число новорожденных в среднем приходится одно заболевание.

3.     Определить вероятность того, что среди 100 случайно выбранных новорожденных обнаружится 2 младенца с болезнью Дауна.

Решение

1.     Определяем среднюю вероятность заболевания. При этом мы должны руководствоваться следующими рассуждениями. Болезнь Дауна зарегистрирована лишь в 10 клиниках из 21. В 11 клиниках заболеваний не обнаружено, в 6 клиниках зарегистрировано по 1 случаю, в 2 клиниках – 2 случая, в 1-й клинике – 3 и в 1-й клинике – 4 случая болезни. 5 случаев заболевания не было обнаружено ни в одной клинике. Для того чтобы определить среднюю вероятность заболевания, необходимо общее число случаев (6·1 + 2·2 + 1·3 + 1·4 = 17) разделить на общее число новорожденных (21000):

 

 

3.