2.3.1. Коэффициент автокорреляции и его оценка
Для полной характеристики случайного процесса недостаточно его математического ожидания и дисперсии. Еще в 1927 г. Е.Е.Слуцкий ввел для зависимых наблюдений понятие "связанного ряда": вероятность возникновения на определенном месте тех или иных конкретных значений зависит от того, какие значения случайная величина уже получила раньше или будет получать позже. Иными словами, существует поле рассеяния пар значений x(t), x(t+k) временного ряда, где k - постоянный интервал или задержка, характеризующее взаимозависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации -
(k) = E[(x(t) - m)(x(t + k) - m)] -
и автокорреляции
(k) = E[(x(t) - m)(x(t + k) - m)] / D ,
где m и D - математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p(x(t1),x(t2)). Однако для стационарных процессов, находящихся в определенном статистическом равновесии, это распределение вероятностей одинаково для всех времен t1, t2 , разделенных одним и тем же интервалом. Поскольку дисперсия стационарного процесса в любой момент времени (как в t, так и в t + k) равна D = (0), то автокорреляция с задержкой k может быть выражена как
(k) = (k) /(0),
откуда вытекает, что (0) = 1. В тех же условиях стационарности коэффициент корреляции (k) между двумя значениями временного ряда зависит лишь от величины временного интервала k и не зависит от самих моментов наблюдений t. Коэффициент автокорреляции может быть оценен и для нестационарного ряда, но в этом случае его вероятностная интерпретация теряется.
В статистике имеется несколько выборочных оценок теоретических значений автокорреляции (k) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой k (Андерсон, 1976; Вайну, 1977):
Наиболее важным из различных коэффициентов автокорреляции является первый - r1, измеряющий тесноту связи между уровнями x(1), x(2) ,..., x(n -1) и x(2), x(3), ..., x(n).
Распределение коэффициентов автокорреляции неизвестно, позтому для оценки их достоверности иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику
t = r1 (n -1)0.5 ,
которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).
Yandex.RTB R-A-252273-3
- Глава 2. Классические методы исследования
- 2.1. Предварительная обработка и анализ рядов динамики
- 2.1.1. Общие представления о динамических рядах
- 2.1.2. Примеры временных рядов и их характеристики
- 2.1.3. Пропуски, выбросы и разрывы временных рядов
- 2.1.4. Выборочные статистические характеристики ряда
- 2.2. Методы выделения тренда временных рядов
- Булат Окуджава
- 2.2.1. Общие замечания
- 2.2.2. Метод скользящих средних
- 2.2.3. Медианное сглаживание
- 2.2.4. Метод экспоненциального сглаживания
- 2.2.5. Процедура сезонного экспоненциального сглаживания
- 2.2.6. Частотные фильтры
- 2.2.7. Тесты для оценки наличия тренда
- 2.2.8. Параметрические модели тренда
- 2.3. Автокорреляционная функция и спектр
- Булат Окуджава
- 2.3.1. Коэффициент автокорреляции и его оценка
- 2.3.2. Автокорреляционные функции
- 2.3.3. Критерий Дарбина-Уотсона
- 2.3.4. Спектральный анализ
- 2.4. Стохастические модели временных рядов
- Булат Окуджава
- 2.4.1. Основные типы стохастических моделей
- 2.4.2. Этапы построения моделей
- 2.4.3. Модель авторегрессии
- 2.4.4. Модель скользящего среднего
- 2.4.5. Модель Бокса-Дженкинса (арисс)
- 2.4.6. Сезонная модель