logo
1rozenberg_g_s_shitikov_v_k_brusilovskiy_p_m_ekologicheskoe_p / 2_Основа

2.4.1. Основные типы стохастических моделей

Идея использования математических моделей для описания поведения физических объектов является общепризнанной. В частности, иногда удается получить модель, основанную на физических законах, что дает возможность вычислить почти точное значение какой-либо зависящей от времени величины в любой момент времени. Например, мы можем вычислить траекторию ракеты, запущенной в известном направлении с известной скоростью. Такие модели называются детерминированными, хотя реальные объекты крайне редко бывают целиком детерминированными (например, неучтенная скорость ветра может слегка отклонить ракету от курса). Поэтому в случае экологических объектов, для которых доля влияния случайных (неучитываемых) факторов традиционно очень велика, можно предложить модели, позволяющие вычислить лишь вероятность того, что некоторое будущее значение будет лежать в определенном интервале. Такие модели называются веро- ятностными, либо стохастическими. Интервал времени, на который существует необходимость прогноза вперед при решении конкретной проблемы, называется периодом упреждения.

Пусть x(t + l) - измеренное значение экологического показателя в момент времени t с упреждением на будущее l. Функция t(l), l = 1, 2, ..., дающая в момент t прогнозы для всех будущих времен упреждения, будет называться прогнозирующей функцией в момент t. Очевидна цель - получить такую прогнозирующую функцию, у которой среднее значение квадрата отклонения истинного значения от прогнозируемого [x(t + l) - t(l)]2 является наименьшим для каждого упреждения l. В дополнение к вычислению наилучшего прогноза необходимо также указать его точность, чтобы можно было оценить риск, связанный с решениями, основанными на прогнозировании. Точность прогноза выражается, как правило, доверительными пределами по обе стороны от прогнозируемых значений для любого удобного значения уровня вероятности (например, для 95%).

Как было отмечено выше, простые параметрические модели тренда не всегда обеспечивают эффективное вычисление будущего поведения объектов. Определенной альтернативой являются итеративные модели, основанные на концепции того, что временные ряды, в которых наблюдается отчетливая автокорреляция, целесообразно рассматривать как результат некоторого преобразования последовательности независимых импульсов at. Эти импульсы - реализация случайных величин с фиксированным распределением, которое обычно предполагается нормальным с нулевым средним и дисперсией a2, что соответствует "белому шуму". Считается, что "белый шум" at можно трансформировать в традиционно рассматриваемый стационарный процесс, используя следующие преобразования:

Современная статистическая теория оценивания параметров таких моделей, заложенная еще советскими математиками (Яглом, Пинскер, 1953; Яглом, 1956), была обобщена Дж.Боксом и Г.Дженкинсом (1974). Модели АР и СС достаточно высокого порядка могут хорошо аппроксимировать почти любой стационарный процесс. В связи с этим модель АР часто применяется для моделирования остатков в той или иной параметрической модели, например регрессионной модели или модели тренда. Для достижения большей гибкости в подгонке модели к наблюдаемым временным рядам часто целесообразно объединить в одной модели оба преобразования, получив комбинированную модель авторегрессии - скользящего среднего (АРСС). Уравнения АР и СС могут быть вычислены и для нестационарных процессов (особенно, если нестационарность носит однородный характер). Однако более эффективна для описания как стационарных, так и нестационарных рядов со стационарными приращениями d-го порядка и рациональным спектром комбинированная модель авторегрессии - интегрированного скользящего среднего (АРИСС).

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4