Биоформы в художественном конструировании
Формы предметной среды создавались человеком сначала на основе подражания формам природы. Любое творение природы представляет собой высокосовершенное произведение, отличающееся поразительной целесообразностью, надежностью, прочностью, экономичностью расходования строительного-материала при разнообразии форм и конструкций. Не исключено, что среди исчезнувших с лица Земли многочисленных видов животных и растений были и такие, которые могли бы помочь науке решить не одну техническую проблему. По мере познания окружающей среды у человека начало развиваться абстрагированное мышление. Это позволило создавать предметные формы исходя из их назначения и возможностей материалов. Формообразование объектов во многом стало определяться технологическими особенностями их создания, что утвердило свои ритмы организации внешней формы (ритмы кладки деревянных изб, каменных крепостей, кирпичных стен, плетеных поверхностей, вязаных изделий, ритмы конструктивных швов, соединяющих полотнища тканей). Таким образом, ритмическая организация формы, созданной человеком, есть внешнее проявление внутренней структуры, полученной определенным технологическим путем.
Природные формы были неиссякаемым источником идей для художников и конструкторов, многие из них обладали обширными познаниями в ботанике и черпали вдохновение в мире растений. Цветы, стебли и листья, благодаря своим изогнутым силуэтам, служили творческим источником для формообразования в стиле ар ну во. Наиболее распространенной темой стали бутон (символ появления новой жизни), раковина, волна, пламя, облако, экзотические растения с длинными стеблями и бледными цветками. Предпочтение отдавалось лилиям, кувшинкам, ирисам, орхидеям. Для создания живописного узора стилизовали пальмовые листья, водоросли, яркие и грандиозные насекомые, птицы - стрекозы, павлины и ласточки, змеи и борзые собаки. В большой моде было изображение женского тела, особенно в сочетании с фантастическими завитками и волнами длинных волос, напоминающих языки пламени или океанские волны.
61
Бурный рост технической мысли, начавшийся с середины XX столетия, развитие биологии, кибернетики и других наук привело к взаимосвязи биологических и технических дисциплин и обусловило развитие нового научного направления- бионики [Воронцова, 1981]. Бионика (от греч. Ыоп - элемент, ячейка жизни) изучает особенности строения жизнедеятельности организмов для создания новых систем (приборов, механизмов) и совершенствования существующих. Бионика занимается изучением аналогий в живой и неживой природе для дальнейшего использования установленных принципов построения и функционирования биологических систем и их элементов при совершенствовании существующих технических систем, созданием принципиально новых машин, аппаратов, строительных конструкций. Изучая процесс окраски у животных, бионики заимствовали идею изменения цвета в зависимости от изменения температуры. Ученым удалось создать особые термометрические краски, с помощью которых легко узнать, как нагреваются во время работы различные детали машин и механизмов. Бионики давно исследуют конструктивные особенности принципов работы оригинальных «живых движителей», отличающихся высокой проходимостью, маневренностью, надежностью и экономичностью. На их основе разрабатываются проекты вездеходных, прыгающих, ползающих и других универсальных средств передвижения. По принципу вакуумной присоски стали делать подъемные краны, стоящие на прижатой к земле стальной чаше, из-под которой откачивают воздух. В основе движения шагающего экскаватора лежит гидропривод, напоминающий гидропривод пауков. Чтобы не проваливаться при ходьбе, у пингвинов существует оригинальный способ передвижения - на животе, отталкиваясь крыльями и ластами от снега. Создана снегоходная машина «Пингвин», развивающая скорость по рыхлому снегу до 50 км/час.
Первым, кто начал изучать механику полета живых моделей с бионических позиций, был великий Леонардо да Винчи. Он пытался построить летательный аппарат с машущим крылом. Идея создания летательного аппарата по принципу полета насекомых - энтомоптера, -зародившаяся в глубокой древности, продолжает оставаться на повестке дня для биоников. В 1923 г. В. Татлин создал уникальную модель летательного аппарата, основанного на принципе действия птичьего крыла и выполненного из дерева, шелка, алюминия, китового уса и других материалов. Автор построил аппарат на принципе использования живых органических форм. Наблюдения над этими формами привели его к выводу о том, что «наиболее эстетичные формы и есть наиболее экономичные. Работа над оформлением материала в этом направлении и есть искусство». Принцип рациональности и функциональности формы, ее соответствие свойствам материала - важная часть татлинской концепции формообразования.
Бионика- это наука об использовании знаний о конструкциях и формах, принципах и технологических процессах живой природы в технике и строительстве. Архитектурная бионика - ветвь бионической науки, исследующая принципы формообразования гармонически сформированных функциональных структур. В строительном искусстве ярче, чем в какой-либо другой сфере деятельности человека, видны первые шаги бионики. Архитектурная бионика не предполагает копирование форм живой природы: в архитектуре используются законы и принципы формообразования наиболее гармонически сформированных функциональных структур в органическом мире. В живой природе структурную организацию формы определяет характер ее функционирования (способ жизни, развития). Финский дизайнер Ал-вар Аалто заметил: «В творениях природы формы возникают из их внутренних конструкций». Основой создания природообразных структур является анализ конструктивной целесообразности форм. Изучение природных форм позволило архитекторам разработать новые типы структур: соединенные по спирали, пружинящие, построенные на шарнирах, соединенные по принципу центрально-осевой симметрии, с трансформирующимися конструкциями. Подобного рода объекты несут новые образы, их ритмическая организация одновременно и новая, и столь знакомая становится признаком оригинального дизайна. К этим явлениям следует чутко относиться проектировщику костюма, ибо костюм должен вписываться в окружающую, быстро меняющуюся среду.
62
Все изменения формы растений и животных (открывающиеся и закрывающиеся в зависимости от времени суток лепестки цветов, изменения пространственной формы частей растений в зависимости от света и механических раздражений) носят временный характер и в биологии называются обратимыми движениями, а в архитектонике- трансформациями. Принцип трансформации природных конструкций и систем представляет большой интерес для архитекторов при решении проблемы «движущейся архитектуры». Особое внимание уделяется вопросу создания трансформирующихся сооружений для районов с неустойчивым климатом, требующим автоматически регулируемого покрытия для зданий.
На основе исследования конструктивных особенностей принципов работы оригинальных живых моделей, отличающихся высокой маневренностью, надежностью и экономичностью (насекомые, черные морские ежи, ящерицы, пингвины, горные козлы, тигры, леопарды и проч.), разрабатываются проекты вездеходных, прыгающих, ползающих и других универсальных средств передвижения. Биомеханика (от греч. bios - жизнь) изучает механические свойства живых тканей, органов и организма в целом, а также происходящие в них механические явления (при движении, дыхании и т.д.).
Закрученная форма природных конструкций подсказала архитекторам новую форму спиралевидной основы здания - турбосомы. Она аэродинамична, любые ветры лишь обтекают ее тело, не раскачивая и не принося никакого вреда. Турбосома может быть использована при строительстве высотных домов.
Принцип сопротивляемости конструкции по форме, которая проявляется в складчатых листьях, в закручивающихся в спираль или в трубочку листьях и лепестках растений, принимающих другую пространственную форму, нашел широкое применение в современном строительстве. Складчатые конструкции, образованные из плоских поверхностей, просты в изготовлении и в монтаже, они могут перекрывать весьма большие сооружения.
Паутина явилась прообразом конструкции моста на длинных гибких тросах, положив начало строительству подвесных мостов. Принципы построения природных конструкций из тонких натянутых нитей, а также конструкций из нитей с натянутыми между ними мембранами легли в основу вантовых конструкций. Прототипами для них послужили паутина, перепончатые лапы водоплавающих птиц, плавники рыб, крылья летучих мышей. В формообразовании современного костюма распространены образные темы, повторяющие прозрачность и деликатность строения паутины в трикотажных переплетениях. Тончайшие нити вискозы и шелковой пряжи в структурах и хаотичных рисунках, полученных на основе спущенных петель, - идеальные переплетения для вечерней одежды. Металлизированная пряжа с эффектом ржавчины и окисления позволяет создать ощущение каркаса - структуры, существующей как бы отдельно от тела и создающей объемные скульптурные силуэты. Трикотаж, напоминающий кокон, создают из веревок и лент, как бы обвязанных или оплетенных вокруг тела. С одной стороны, он защищает, а с другой - ограничивает подвижность.
Байтовые конструкции являются наиболее эффективным решением для покрытия зданий с большим пролетом - висячие покрытия. Заинтересовал архитекторов и принцип конструкции листьев растений: лист обладает достаточной механической прочностью, которая в значительной степени зависит от жилок, пронизывающих его плоскость от основания до верхушки. Взяв за основание жилкование листа тропического растения Виктории регии, итальянский архитектор П. Нерви сконструировал плоское ребристое покрытие фабрики Гатти в Риме и покрытие большого зала Туринской выставки, добившись большого конструктивного и эстетического эффекта. Используется в архитектурной практике и принцип построения пространственно-решетчатых систем: радиолярий, диатомовых водорослей, некоторых грибов, раковин, даже микроструктуры головки тазобедренной кости, которая никогда не работает на излом, а только на сжатие и растяжение. Подобная система может быть использована в конструировании опорных рам, ферм, подъемных кранов. Ученые обнаружили, что распределение силовых линий в конструкциях Эйфелевой башни и в берцовой кости человека идентично, хотя инженер не пользовался живыми моделями. Известный математик-конструктор Ле-Реколе установил, что прочность биологической конструкции скелета за-
63
ключается в соответствующем расположении в материале не плоскостей, а пустых пространств, то есть обрамлений отверстий, соединяемых различным образом. На основе конструктивного изучения структуры костей и других природных моделей родился в архитектуре принцип дырчатых конструкций, положивший начало разработке новых пространственных систем. Так французские инженеры использовали принцип дырчатых конструкций при строительстве моста в виде внешнего скелета морской звезды. Перфорация, плетение, сетки и другие конструкции, способные создавать легкие пружинящие поверхности, активно используются дизайнерами в мебельном производстве. Ажурность сетчатых конструкций применяется как художественное средство.
Архитекторы в своем творчестве нередко используют принцип конуса. Так, в конструкции Останкинской телебашни отчетливо виден конус гравитации. На основе принципов построения природных высотных конструкций строители проектируют высотные здания нового типа - типа стволовой констрз^кции. По принципу строения стебля пшеницы разработан проект высотного здания, у которого основание более узкое, чем средняя часть. Упругие демпферы, разделяющие здание по высоте на несколько элементов, снижают силу ветрового напора и сокращают нагрузку на основание.
Стебель бамбука при значительной высоте и предельно малом диаметре имеет абсолютную устойчивость. Ряд соединенных полых элементов трубчатого сечения делают эту конструкцию легкой, утолщения и мембраны в местах соединений обеспечивают ее прочность. Эта оригинальная, созданная природой конструкция стала прообразом современных телескопических антенн, спиннингов, настольных ламп.
С развитием городов и ростом населения перед строителями встала задача проектирования значительных по объему и размеру зданий без тяжелых трудоемких покрытий и промежуточных опор. Поэтому легкие и прочные, тонкостенные и экономичные природные конструкции заинтересовали архитекторов. Принцип конструкции этих оболочек лег в основу создания легких, большепролетных стальных и железобетонных покрытий различной кривизны, которые нашли широкое применение при строительстве спортивных комплексов, кинотеатров, выставочных павильонов и т.д. В современных постройках толщина купола измеряется миллиметрами, и получали такие купола название оболочек-скорлуп. Скорлупа страусиного яйца обладает особой микроструктурой, допускает газообмен содержимого яйца с внешней средой, однако не пропускает внутрь микроорганизмы и молекулы веществ, своими размерами превышающие молекулу кислорода. Задача бионики состоит в имитировании свойств скорлупы страусиных яиц - этой природной упаковки - техническими средствами, используя имеющиеся технические возможности, сконструировать некую слоистую структуру, которая даёт такой же физический эффект, как природная скорлупа.
Принцип тургора живых моделей привел к появлению в архитектуре совершенно новой области строительной техники - созданию пневматически напряженных конструкций. Пневматическое напряжение, создаваемое избыточным давлением газа или жидкости, обеспечивает гибкой герметичной оболочке несущую способность и устойчивость при любых видах нагрузок. Важнейшими преимуществами надувных систем являются экономичность, малый вес, транспортабельность, компактность, быстрота монтажа, поэтому принцип тургора получил сейчас широкое применение особенно при сооружении временных построек: выставочных и ярмарочных павильонов, спортивных залов, туристических лагерей, овощехранилищ и пр. Наиболее распространенными формами надувных построек пока являются цилиндрический свод и сферический купол, хотя принцип тургора допускает огромное разнообразие пневматических конструкций.
Современные компьютерные технологии и программы позволяют моделировать и просчитывать воздушные потоки в помещениях и зданиях любой конфигурации. Однако когда речь заходит о поиске действительно новаторской идеи, то на неё инженеров гораздо чаще наталкивает всё же не компьютер, а живая природа. При возведении здания техникума в Санкт-Августине под Бонном Кёльнское объединение инженеров-строителей разработало необычную конструкцию вентиляционно-отопительной системы, идея которой позаимство-
64
вана у термитов. Прежде чем попасть в аудитории, воздух проходит по подземному воздуховоду длиной в 150 метров: зимой такое техническое решение обеспечивает нагрев, а летом -охлаждение поступающего внутрь здания воздуха, делая в значительной мере излишними кондиционеры.
Принцип построения живых конструкций и унифицированных элементов используется строителями при возведении секционных домов из однотипных элементов. Конструкция пчелиных сот легла в основу изготовления панелей для строительства жилых зданий, однако в дальнейшем, с целью экономии материала, конструкторы стали собирать панели из одного элемента - треугольника с продленными сторонами. При сборке получается сотовая конструкция, но без двойных стенок. Весьма успешно используют принцип пчелиных построек и гидростроители - при возведении плотин, шлюзов и других гидросооружений они применяют сотовые каркасы.
Природное сырье и биотехнологии в производстве текстиля
Вся одежда минувших веков вплоть до начала XX столетия изготавливалась исключительно из шерстяных и растительных волокон, которыми одаривала людей природа. Человечеству известны десятки растений, из которых можно получать ткани: хлопок, лен, пенька, джут, рами, кенаф, абака, кендырь, сизаль, манила и другие. Одним из первых растений, которое использовалось для получения одежных материалов, была обыкновенная крапива. Она стала удобным и дешевым сырьем для изготовления грубой ткани, мешковины, рыболовных снастей, веревок, канатов. Дикорастущей крапивы было в избытке. Вплоть до XVII века в Центральной Европе под крапиву отводились большие площади обрабатываемой земли. Впоследствии крапиву потеснили лен, шерстяное, шелковое сырье и пенька. Волокнистые стебли крапивы пригодны для изготовления бумаги и некоторых видов ткани. В Непале рассматривается вопрос о промышленном освоении практически неисчерпаемых зарослей крапивы, которая в предгорьях Гималаев достигает трехметровой высоты и произрастает целыми полями. Центральное швейцарское ведомство по овощеводству признало крапиву культурным растением и рекомендовало ее для массового возделывания. Крапива издавна применяется в народной медицине, благодаря содержащемуся в ней большому числу целебных веществ. Из ее листьев можно получить натуральный краситель, а семена используются в парфюмерии. Высокая урожайность крапивы и ее неистребимая живучесть позволяет ученым видеть в ней источник получения белка в будущем [Клюев, Чистоклет, 1987]. По данным производителей (Германия), ткани из крапивы выглядят как льняные, блестят как шелковые, обладают теплозащитными свойствами как шерстяные [Бузов, Алыменкова, 2004].
Из существующих видов целлюлозных волокон наиболее распространенными для производства одежды в нашей стране являются хлопковые и льняные волокна. Хлопковые волокна покрывают поверхность семян однолетнего растения хлопчатника. Для получения льняного волокна выращивают специальный вид льна - лен-долгунец, представляющий собой однолетнее травянистое растение. По сравнению с хлопком в волокне льна содержится большое количество сопутствующих веществ: присутствие лигнина в составе волокон придает им жесткость, хрупкость и ломкость. При действии светопогоды активизируется процесс окисления целлюлозы кислородом воздуха, что приводит к снижению механических свойств (прочности, удлинения), повышению жесткости и хрупкости волокон. При обработке 20%-м раствором щелочи целлюлозные волокна набухают, распрямляются, сопутствующие низкомолекулярные соединения частично разрушаются, в результате чего повышается прочность волокон, увеличивается их блеск, улучшается способность к окрашиванию и т.п. Подобная обработка используется при мерсеризации хлопчатобумажных тканей.
Для получения текстильных материалов используют шерсть различных животных, чаще всего в смеси с овечьей шерстью. Шерстяное волокно изготавливают из шерсти, т.е. волосяного покрова животных: овец, коз, верблюдов и др. Наиболее широкое применение в производстве текстильных материалов получила шерсть овец. Верблюжья шерсть имеет пуховые во-
65
локна длиной 60-70 мм, альпака - шерсть ламы из семейства верблюдовых - тонкое, прочное, мягкое и блестящее волокно. Кашемир - шерсть кашмирских коз, получаемая вычесыванием, - очень тонкое и длинное (до 450 мм) волокно. Мохер (могер, тифтик) - шерсть ангорской козы - представляет собой тонкое, длинное (150-200 мм), мало извитое и блестящее волокно. Ангора - пух ангорского кролика - мягкое, тонкое, водостойкое и молеустойчивое волокно.
Шелковое волокно - продукт выделения особых шелкоотделительных желез некоторых насекомых. Промышленное значение имеет шелк, получаемый от гусениц тутового шелкопряда. В период выкармливания гусениц листьями тутового дерева в их теле совершается белковый обмен. Под воздействием ферментов пищеварительного сока белки, содержащиеся в листьях тутового дерева, распадаются на отдельные аминокислоты, которые усваиваются клетками организма гусеницы. Помимо этого в организме происходят синтез аминокислот и перестройка их молекул, т.е. превращение одних аминокислот в другие, В результате к моменту окукливания в теле гусеницы накапливается жидкое вещество с полным набором различных аминокислот, необходимых для создания основного высокомолекулярного соединения натурального шелка - фиброина и шелкового клея - серицина. Шелк особо чувствителен к действию светопогоды. Например, после 200-часовой экспозиции в летнее время волокно шелка теряет 50% первоначальной прочности- значительно больше, чем другие волокна. Шелк становится хрупким, менее эластичным и более гигроскопичным.
Волокна животного происхождения (шерстяное и шелковое) состоят из белков - природных высокомолекулярных соединений, к которым относятся кератин (в шерсти), фиброин и серицин (в шелке). Макоромолекулы белков натуральных волокон имеют сложную форму <х-спирали. При внешних воздействиях а-спирали макромолекул могут распрямляться на отдельных участках и переходить в р-спирали. Белковые волокна неустойчивы к действию даже слабых растворов щелочи, но выдерживают действие слабых растворов минеральных кислот и более сильных - органических - без заметных изменений свойств. В состав шерсти помимо кератина (90 %) входит некоторое количество минеральных и жировосковых веществ, пигмента и межклеточного вещества. Волокно шерсти имеет довольно сложное многоклеточное строение. Каждая чешуйка наружного слоя волокна покрыта тонким слоем, состоящим из хитина, воска и других веществ, обладающих большой устойчивостью к кислотам, хлору и другим реактивам. Неоднородное строение основного слоя волокна обусловливает его природную извитость. Наличие сердцевидного срединного слоя повышает толщину и жесткость волокна. По характеру строения шерстяные волокна подразделяются на четыре типа: пух - тонкое, короткое, сильно извитое волокно; переходный волос - более толстое; ость - еще более толстое, жесткое волокно; мертвый волос - толстое, грубое малопрочное волокно. Однородная шерсть содержит преимущественно волокна одного типа и подразделяется на тонкую, полутонкую, полугрубую. Тонкую и полутонкую шерсть используют в производстве тонких костюмных и платьевых тканей, высококачественного трикотажа. Неоднородная шерсть состоит из всех типов волокон. Неоднородную грубую шерсть применяют при изготовлении грубосуконных тканей, войлока, валенок и т.п.
Однако природа не может дать текстильные материалы, отвечающие современным запросам наз'ки, техники, производства. Из древесины ели, сосны, пихты, бука, хлопкового пуха получают природную целлюлозу, служащую сырьем для производства гидратцеллюлоз-ных искусственных волокон. По химическому составу гидратцеллюлоза аналогична природной целлюлозе, однако существенно отличается от нее своей физической структурой. Вискозные волокна обладают высокой гигроскопичностью, светостойкостью, мягкостью и стойкостью к истиранию. Однако им свойственен и ряд недостатков, связанных с неоднородной, рыхлой и мало упорядоченной структурой. При увлажнении волокна сильно набухают, что приводит к повышенной усадке текстильных материалов, значительно теряют прочность при растяжении (до 50 %) и устойчивость к истиранию. В нашей стране выпускают высокомодульное вискозное волокно сиблон, которое имеет прочность в нормальных условиях в 1,6 раза выше, чем прочность обычного вискозного волокна, а в мокром состоянии - в 2 раза
66
выше. Сиблон применяется как заменитель средневолокнистого хлопка, в смеси с хлопковыми и синтетическими волокнами и в чистом виде. Тысяча метров тончайшего сиблона весит ОДЗ грамма, и его в самых разных пропорциях можно смешивать с тонковолокнистым хлопком.
Искусственные и синтетические волокна дополняют натуральные, придают им такие свойства, которыми природные материалы не обладают. Если в шерсть добавить не более 10% капрона, то это создаст совершенно новую гамму свойств. Профилированные волокна капрона усиливают цепкость и шерстоподобность ткани, снижают ее вес за счет полых волокон. Удлиненные волокна нитрона после тепловой обработки усаживаются и структура их копирует натуральные шерстяные волокна, в результате пряжа становится пушистой. Если в шерстяную пряжу добавить даже более половины нитрона, внешний вид ткани останется неизменным. К шерстяному волокну, состоящему из полимерных молекул, созданных природой, можно прирастить др)тие молекулы, и ткань приобретает новые, необычные для нее свойства. В частности, перестает садиться. После воздействия токов высокой частоты шерстяные волокна практически теряют способность наэлектризовываться. Обработав шерстяную пряжу инфракрасными лучами, можно значительно улучшить ее физико-механические свойства, снизить обрывность, что поднимает производительность труда в ткачестве.
На основе биотехнологии ученые разработали несколько способов получения искусственных волокон, которые по своим свойствам мало отличаются от натуральных. К свойствам натуральной шерсти вплотную приблизилось биоПАНволокно. В процессе производства это синтетическое полиакрилонитрильное волокно обрабатывается специальной биомассой из особых микроорганизмов. Проделав разрушительно-созидательную работу, бактерии выдают почти готовый к употреблению продукт, заменяющий шерсть.
Дессинаторы, разрабатывающие новые структуры тканей и трикотажных полотен, предложили технологию получения тонких и легких изделий. Переплетение натуральной и синтетической нитей в изделиях рассчитывается таким образом, что внутренняя, прилегающая к телу поверхность изделия хлопчатобумажная, а внешняя - эластичная. Квадратный метр такого полотна более чем на треть легче обычного, что позволяет значительно снизить материалоемкость производства.
Приверженцы бионики пытаются скопировать природные «технологии» получения многих веществ, засекреченных бесконечно долгой эволюцией развития органической жизни. Обычная паутина обладает необыкновенно высокой прочностью и эластичностью и состоит из протеинов. Биологи нашли гены, ответственные за процесс протеинового синтеза в насекомых. Они пытаются привить их клеткам дрожжевых микроорганизмов методами генетической инженерии. Кроме пауков, «плести» волокна могут микроскопические грибки плесени. Размножаясь на отходах хлопкового производства, они начинают синтезировать ферменты, расщепляющие целлюлозу. С помощью генетических ухищрений биотехнологии отходы хлопка смогут превратиться в ткани.
Химические волокна вытесняют натуральные: с конца 50-х годов XX века натиск рукотворного текстильного сырья остановил рост мирового производства льна, шерсти, шелка. Технология получения армированных волокон, повышающая их прочность в 1,5-2 раза, позволила внедрить новый способ в самые передовые области техники и производства. Например, светопроводящие синтетические волокна заменяют хрупкие стеклянные световоды в волоконной оптике, с которой связано будущее кибернетических машин и информационных систем. Производство армированных ниток, представляющих синтетический полиэфирный стержень, снаружи оплетенный хлопком, имеет широкое применение в швейном и обувном деле. У армированных нитей много достоинств: им не страшны бактерии, плесень, коварные перемены погоды; они устойчивы к агрессивным кислотам (серной и уксусной), щелочам, бензину, машинному маслу.
На основе углеродного элемента карбина создано волокно витлан, применяемое в восстановительной хирургии. Способность выделять тепло при прохождении через витлан электрического тока используется при создании костюмов с электроподогревом. Теплозащитные материалы используются в космической промышленности. Углеродное волокно успешно
67
применяется в фильтрах для очистки лекарств и донорской крови, для защиты органов дыхания. Материалы из огнестойкого волокна не боятся мороза вплоть до температуры жидкого азота. Армированные таким волокном резина и стеклопластики могут надежно работать и в космической среде, и в реакторах с резким перепадом температур. Это пока единственный в своем роде синтетический рекордсмен, который наряду с высокой термостойкостью сохраняет прочность и эластичность под длительным радиационным и ультрафиолетовым облучением. Такой уникальный набор достоинств дает сверхстойкому полимеру право занять одно из почетных мест в наиболее перспективных областях науки, техники и производства.
При проектировании структуры волокон очень помогло изучение природы. Структура натуральных волокон позволяет им выполнять определенные функции в пределах живого организма, поэтому, копируя структуру натуральных волокон, можно достичь высокой функциональности и эстетики химического волокна. Чтобы производить синтетику с качествами шелка, необходимо объединить усилия ученых и технологов. Это может быть достиг- . нуто за счет разнообразных новых технологических решений, широко применяемых в на- стоящее время. Особенностями шелка, которые копируются в синтетических волокнах, и методами, используемыми для их достижения, являются: блеск - достигается треугольной формой поперечного сечения; драпируемость - обеспечивается снижением давления в местах контакта нитей за счет снижения веса; мягкость- обеспечивается применением улътратонких волокон; объемность - формируется за счет смешанного ткачества и комбинирования обычных волокон с высокорастяжимыми нитями; шелестящий звук- является следствием нерегулярной формы и микроуглублений; натуралоподобный внешний вид - обеспечивается комбинированием различных толщин и форм поперечного сечения и комбинированием нитей и волокон. Для копирования извитости шерсти волокнам полиэстера придается дополнительная извитость за счет использования технологии ложного кручения при максимальном использовании их термопластических свойств. Для этих целей был разработан процесс получения из волокон полиэстера крученой пряжи, подобной шерстяной, путем формирования микропетель за счет текстурирова-ния или за счет получения пушистой поверхности путем местного утолщения. Наиболее трудная задача состояла в том, чтобы достичь противоположных характеристик шерсти, а именно: мягкости и упругости одновременно. Это было достигнуто за счет совместного применения двух приемов: ложного кручения и использования нитей с различным удлинением. Способность к водопоглощению, которая делает хлопок столь привлекательным в теплом и жарком климате, является результатом наличия в его структуре микропор и полостей. Имитация структуры хлопкового волокна позволяет достичь в синтетике таких свойств, как способность к поглощению жидкостей за счет модификации поперечного сечения и повышенной пористости волокна и теплозащитных свойств за счет высокой степени сохранения тепла в полой нити. Однако синтетика не может полностью заменить хлопок, в связи с чем разрабатываются новые искусственные целлюлозные волокна. Примером таких волокон являются волокна, известные под маркой Lyocel, которые сочетают положительные свойства хлопка и синтетического волокна.
Химические волокна обладают многими особенностями свойств, не присущими натуральным волокнам. К таким свойствам относятся: одновременная способность к поглощению влаги и водоупорность; электропроводимость; антибактериальные и аромопрофилакти-ческие свойства; устойчивость к действию ультрафиолетовых излучений; антимикробные свойства; очень малый вес [New fibers].
Некоторые высокомолекулярные соединения можно наполнить лекарственными веществами. Сделанные из таких волокон (биолана, иодина, летулана) ткани будут' защищать живой организм от болезнетворных микробов. Многие медики облачены в халаты и костюмы из специальной антимикробной ткани. Она соткана из ионообменных волокон. В перспективе - создание лечебных видов тканей и полотен, где лекарственные вещества будут оказывать целительное действие на определенные участки кожи человека или на весь организм в целом.
68
Одним из последних достижений в области технологии получения текстильных материалов из химических волокон является материал Shin-gosen, который может быть определен как одежный материал, отвечающий различным вкусам и назначению, благодаря сочетанию свойств синтетических и натуральных волокон. Разработка данного материала - это результат применения целого ряда новых комбинированных текстильных и других технологий, направленных на создание материалов, способных удовлетворить различные эстетические требования. Материал Shin-gosen нельзя отнести к ранее известным химическим материалам, таким как нейлон и полиэстер. Это новая категория волокнистого материала, в основе производства которого лежат как уже известные технологии, так и вновь разработанные. Наиболее широко при производстве данного материала применяется смешанное прядение в сочетании с поверхностной обработкой. Смешанное прядение волокон с различными уровнями усадки придает материалам объемность. Применение ложной крутки в сочетании с использованием прядения филаментных нитей с различными уровнями удлинения обеспечивает получение шерстоподобной поверхности материала. Такие материалы отличаются высоким качеством, хорошей драпируемостью, большим разнообразием, которые не могут быть достигнуты в материалах из обычных волокон и нитей. Технология получения материала Shin-gosen позволяет получать материал с различным туше.
Компания Nisshinbo разработала ряд новых изделий, которые выглядят так, как будто бы сделаны вручную, путем применения 1/f колебаний процесса прядения, ткачества или вязания. Такие колебания широко распространены в природе, например в дуновении ветерка или ропоте ручья, и дают чувство умиротворения. 1/f колебания могут быть названы ритмом природы. Они широко наблюдаются в природных явлениях и дают нам чувство расслабления. В общем, природные явления и натуральные материалы имеют нерегулярности, которые приятны или неприятны для нас в зависимости от их состояния. Типичная природная нерегулярность напоминает нерегулярную волну, не имеющую каких-либо закономерностей. Тем не менее, анализируя такие нерегулярности, можно установить, что они являются результатом: комбинации простых элементарных волн. Когда мы наблюдаем длину элементарных волн в диапазоне из частот, определенные природные нерегулярности дают обратную пропорциональную зависимость между длиной волны и частотой. Такие нерегулярности названы 1/f колебаниями. Присутствие 1/f колебаний в природных явлениях дают не только расслабление, но и создают ощущение красоты. Таким образом, они не только являются универсальным ритмом природы, но и тесно связаны с комфортом и красотой. Компания Nisshinbo применила понятие 1/f колебаний к пряжам и текстилю и разработала процесс образования пряжи с 1/f колебанием при помощи специальной системы прядения, которая может управлять конструкцией объекта. Эта пряжа сделана промышленным способом, но выглядит так, как будто сделана вручную. Такая пряжа используется в производстве носовых платков, занавесок, джинсовых тканей и т.п. Эти изделия имеют неоднородную поверхность и создаются для того, чтобы позволить нам расслабиться. До настоящего времени однородная поверхность была наиболее важным требованием качества в промышленном изделии, поэтому идея производить шероховатые изделия с природной нерегулярностью промышленным путем является новой и революционной.
Разработаны текстильные материалы, способные изменять свой цвет в зависимости от условий окружающей среды (материалы-хамелеоны), а также обладающие радужной переливчатой поверхностью. Существуют технологии получения материалов-хамелеонов на основе применения явлений фотохроизма (изменение цвета под воздействием света), термо-хроизма (изменение цвета под воздействием температуры), влагохроизма (изменение цвета под воздействием влажности). Получение подобного эффекта достигается методом печати или путем применения фотохромных материалов. Разработан термохромный одежный материал Sway путем включения в структуру микрокапсул, содержащих теплочувствительные красители. Микрокапсулы равномерно наносятся на поверхность материала и покрываются сверху полиуретановой смолой. Они сделаны из стекла и содержат краситель, который реагирует на температуру, и в зависимости от этого окрашивается или обесцвечивается. Sway -
69
многоцветный материал, включающий 4 основных цвета и 64 цветовых комбинации, которые изменяются при изменении температуры не более чем на 5°С. Компанией Kanebo Ltd разработан материал Comik-relief с печатным рисунком из микрокапсул, содержащих фото-хромный материал, который первоначально бесцветен, но под действием ультрафиолетового излучения с длиной волны 350-400 мкм может менять цвет от светло-голубого до темно-синего.
В природе существует множество элементов, которые могут быть использованы при создании цвета, например оболочка жемчуга, перья павлина, бразильская бабочка Морфо-ала, которые изменяют цвет при изменении угла падения света. Оболочка жемчуга имеет многослойную структуру, а призматические перья павлина изменяют цвет благодаря решетчатой структуре, состоящей из тонких пластин меланина. Морфо-ала проявляет металлический кобальтовый синий цвет вследствие параллельного расположения канавок, образуемых чешуйками, расположенными в виде лестницы. Профессор К. Мацумото разработал многослойную светоотражающую флуоресцирующую пленку, которая наносится в виде дополнительного слоя на волокноподобные пленки, толщиной 0,2-0,5 мкм, используя технологию изготовления металлизированных нитей. При этом волокно принимает заданный оттенок и может приобретать переливчатую (радужную) окраску. Нить, скрученная из таких волокон, приобретает различные оттенки благодаря интерференции падающего света. Сегодня такие радужные переливчатые нити широко применяются в производстве различных текстильных материалов и являются еще одним достижением человечества, полученным на основе изучения природных явлений.
- Введение
- Тема 1. Общие сведения об архитектонике Основные термины и понятия архитектоники
- Архитектоника в системе искусств
- Мода и архитектура
- Тектоника материалов для одежды
- Контрольные вопросы
- Тема 2. Формообразование в проектированиии костюма
- Тектонические системы костюма
- Формообразование драпировок
- Средства формообразования костюма
- Контрольные вопросы
- Тема 3. Гармонизация объемно-пространственных структур Основные виды и категории композиции
- Модульный метод проектирования
- Контрольные вопросы
- Тема 4. Симметрия и асимметрия
- Классическая симметрия
- Аффинная симметрия
- Криволинейная симметрия
- Тема 5. Комбинаторные методы формообразования Комбинаторные принципы формальной композиции
- Контрольные вопросы
- Тема 6 биологическое формообразование в архитектуре и инженерии Формообразование в живой природе
- Биоформы в художественном конструировании
- Контрольные вопросы
- Тема 7. Кинетизм как процесс изменения формы Истоки возникновения кинетического искусства
- Кинетизм и кинетическое искусство
- Биокинематика
- Контрольные вопросы
- Тема 1. Архитектоника плоского листа. Преобразование плоскости в рельеф
- Тема 2. Разработка комбинаторно-модульного рельефа
- Тема 3. Разработка объемно-пространственной структуры. Преобразование структуры с выходом в пространство. Развертки поверхности
- Тема 4. Композиционное решение драпировок
- Тема 4. Композиционное решение драпировок
- Тема 5. Разработка плоскостной монокомпозиции с использованием тектонических свойств различных текстильных и природных материалов
- Тема 6. Технологическая культура объемного формообразования
- Словарь основных терминов
- Список использованной литературы
- Оглавление
- 690600, Владивосток, ул. Гоголя, 41
- 690600, Владивосток, ул. Державина, 57